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Executive overview

Hackers on the Internet have evolved from fame-hungry sabotage to fraud to profitable 
organized data and identity theft. As this evolution continues, it is important for business 
leaders to consider the security of their Web applications as a vital performance indicator of 
the success of their business.

In this IBM® Redguide™ publication, we explain how your organization can evaluate its risk 
for hackers entering into your systems. We also explain how your organization can implement 
security testing and integrate solutions to improve security and protect your information 
assets.

In the first part of this Redguide publication, we discuss how to evaluate the risk that your 
organization is exposed to. We explain why your organization is the target of attacks and who 
is behind them. We illustrate the impact that successful attacks can have on your 
organization. We show the latest trends and statistics in Web application vulnerabilities and 
the underground trade of stolen information. We also give a technical overview of the areas 
where your application can be attacked and discuss the two most common Web application 
vulnerabilities.

In the next part of this Redguide publication, we introduce the software development life cycle 
of Web applications and illustrate how security fits into this life cycle. We provide a 
step-by-step approach to integrating Web application security testing into your software 
development life cycle. In addition, we also show how and where you can use IBM Rational® 
products in your software development life cycle to improve the security of your organization 
based on your business needs.

We conclude this guide with a business scenario in which an organization without any Web 
application security testing gradually transforms into an organization that delivers high quality 
secure products.
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Uncovering the basics of IT attack patterns and their effect on 
your organization

The fact that the number of attacks on Web applications is rising is no longer a surprise to 
most people in the IT business. Successful attacks have received large media attention as 
have successful arrests. However, what really matters to your organization is understanding 
the risk that you are going to be exposed to so that you can take appropriate actions to 
mitigate and control it. 

Knowing the answers to the following questions can help you reach that goal:

� Why might my organization be attacked? 
� How high is the chance that I have a vulnerability in my organization that will be exploited?
� What will be the damage when my organization is successfully attacked?
� What can I do to better protect my organization?

Unfortunately, the days of amateurs, college students, or hackers taking joy rides on 
corporate information systems are largely over. Today’s attackers are economically motivated. 
They are international criminal organizations that make a living by stealing financial 
information and identities. Today’s threat is far more sophisticated and dangerous than the 
security threats of yore, but in some ways, it is more predictable. Where an amateur hacker 
might take an interest in any security vulnerability that comes along, serious computer 
criminals are particularly interested in vulnerabilities that provide a significant return on 
investment. In short, it is all about the money. 

Research about Web application security vulnerabilities published by the IBM Internet 
Security Systems X-Force® research team shows a tremendous growth of reported Web 
application vulnerabilities as a percentage of all reported security vulnerabilities over the past 
years [1]. The probability that these vulnerabilities in your organization will be exploited 
depends on the complexity of exploiting the vulnerability. Because current attackers are 
typically for-profit organizations, most of the attacks are done in an automated fashion to keep 
costs as low as possible. Therefore, if your Web applications can be easily hacked by using 
automated tools, the chances of exploitation are high. 

After your organization has been successfully attacked, the damage attackers can do is vast. 
Aside from the obvious damages because of data loss, you can be exposed to large fines 
levied by the credit card companies, have high expenses for notifying cardholders, sustain 
significant brand damage due to negative publicity, or be involved in civil action against your 
company. Damages sustained this way quickly go up into hundreds of millions of dollars for 
large companies [2].

Fortunately improving your Web application security up to a point where you are no longer an 
economically viable target is not an impossible task. In this Redguide publication, we provide 
answers to these questions. By integrating Rational AppScan® products into your software 
development life cycle, we show how you can protect yourself against many of the threats that 
your organization is currently facing.

Knowing your attackers

Different types of attackers have different motivations for attacking your company. A first 
group of attackers, called script kiddies (also known as H4ck0rZ), can target your company if 
it is a high profile company and attack you, giving them a lot of visibility in the hacker 
community. 
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A second group of attackers, called targeted attackers, can attack your organization for 
principles and beliefs, espionage, or political motivations. This group typically has 
well-defined goals that they want to achieve and choose their targets accordingly. 

A third group of attackers, called organized crime, can make a business out of attacking any 
organization with weak defenses and can turn their attacks into money. They do not care 
specifically about your organization, but if they can, they will use your organization for their 
own profit.

To learn about a successful U.S. FBI sting operation to shut down a major international, 
underground Internet forum for buying and selling credit card data used for identity fraud, see 
the following address:

http://news.cnet.com/8301-1009_3-10234872-83.html?part=rss&subj=news&tag=2547-1009
_3-0-20

Script kiddies
The first group of attackers are the hackers that revel in making it into the media. These 
hackers attack high visibility targets in hopes of making a name for themselves within the 
hacker community or just hack Web sites for fun. Common types of attacks are defacement 
and denial of service attacks by which they hope to make a name in the community.

Among the most famous Web application attacks in this category is the MySpace Samy worm 
in 2005 [3]. The author of this worm used a cross-site scripting (XSS) attack to create a worm 
that propagated throughout the MySpace social network and in less than 24 hours “Samy” 
had over 1 million “friends.” It was both a sophisticated attack and by now a well documented 
one that has become a case study in the Web application security field. Although the Samy 
worm was merely created for fun, MySpace had to be taken offline to remove the worm.

This example illustrates how this group of attackers can attack your company if you are 
potentially going to give them the necessary visibility. They go through quite an extent to have 
their own practical joke while creating publicity for themselves along the way.

Targeted attackers
A second group of attackers is operating in quite a targeted way. Typical examples are attacks 
for espionage (nation, state, and corporate), political or religious beliefs, and so on. Targeted 
attackers are often hired by organizations that use the Internet as a front for conducting their 
wars. These organizations typically steal specific data and intellectual property, or try to 
spread their political or religious beliefs. 

The security community has been monitoring several propaganda wars. For example, in his 
blog, Gary Warner [4] writes about several of these propaganda cyber wars: 

The original cyber propaganda war was launched by Chinese hackers in May of 2001 after 
the collision of a Chinese fighter jet with a U.S. Navy plane. Tens of thousands of U.S. Web 
sites were defaced by Chinese hackers blaming the U.S. for the incident. More recently the 
technique has been adopted by Muslim hackers, beginning with the defacement of 
thousands of Danish and American Web sites in February 2006 after the publication of 
cartoons about the prophet Muhammad, and against Israeli and U.S. Web sites after the 
bombardment of Lebanon by Israel in August of 2006.

The targeted attackers are a real threat to your organization if it is a government institution or 
in any way the focus of the organizations behind these attackers. They put a lot of effort in 
attacking the specific targets that help them achieve their goals.
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Organized crime
The third group of attackers is called organized crime. The often made assumption that “if 
there is no specific reason why attackers would be interested in my company, they will not 
attack me” does not hold for this group. Computer criminals that are part of organized crime 
look for information that they can quickly turn into profit. By and large, this quick turn on 
investment means consumer credit card information and bank account access credentials. 

While sometimes attackers find ways to harvest vast amounts of this type of data from 
corporate servers and networks, a great deal of this information is stolen by spyware running 
directly on user PCs. Corporations with their advanced patching and protection mechanisms 
create obstacles for these attackers. However, consumers, with their lack of protection, casual 
patching behaviors, and general lack of security, remain easy targets. Organized crime uses 
an organization’s servers as a launch platform for their attacks to target customers. For 
example, they might use your forums to spread malicious files, such as specially crafted PDF 
files and multimedia applications (for example Flash) that contain embedded exploits for 
installing the malware on your customers’ PCs.

In addition, certain types of corporate applications, namely custom-built software, such as 
Web applications, remain highly-profitable and inexpensive targets for criminal attackers. 
Consider the sheer number of new vulnerabilities that are found in commercial and open 
source Web applications, the majority of which have no available patch. When coupled with 
the hundreds of thousands of custom Web applications that are also vulnerable (but never 
subject to a vulnerability disclosure, much less a patch), they become the Achilles heel of 
corporate security. Attackers continue to target Web application vulnerabilities, especially 
Structured Query Language (SQL) injection, to plant malware on unsuspecting users that visit 
vulnerable Web sites. 

It is safe to assume that organized crime that is trying to make money from attacking 
computer systems does not care about your systems specifically. However, if your 
applications are easily exploited by using automated tools, you are high on their target list.

Criminal economics 101

To gain a better understanding of how criminal organizations make money by attacking an 
organization, this section looks at criminal economics.1 On a basic microeconomics level, an 
understanding of the opportunity for a computer criminal comes from considering the amount 
of revenue that can be generated from exploiting a vulnerability relative to the cost of doing 
so. Obviously, vulnerabilities that present a high revenue opportunity at a low cost are likely to 
be popular with attackers. Both revenue (opportunity) and cost are made up of a complicated 
set of components. Some of these components can be influenced by the security of your 
applications.

Criminal opportunities
The actual revenue that can be generated from exploiting a vulnerability is a combination of 
the size of the installed base of vulnerable hosts and the value to an attacker of controlling 
each host. This is usually due to the information that the hosts contain and the price that the 
attacker can ask for that information on the black market. 

When a vulnerability is first disclosed, the installed base of vulnerable hosts can be quite 
large. If the value of controlling those hosts is also large, the attacker has a significant 
theoretical revenue opportunity. This sort of situation can motivate efforts by the security 
industry to roll out patches quickly and reduce the size of the installed base. If the industry is 

1  The Criminal economics discussion is in large an excerpt from the IBM Internet Security Systems, “X-Force 2008 
Trend & Risk Report” [1].
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effective, the total real revenue opportunity can quickly become too small for attacks to 
materialize. However, there might be cases where the installed base of vulnerable hosts is 
large, but the value of controlling the type of host that typically runs the vulnerable software is 
small. Therefore, attackers have little incentive to exploit the vulnerability regardless of what 
the security industry does to remediate it.

Criminal costs
The cost of generating revenue by exploiting vulnerabilities is also made up of several factors. 
First is the cost of obtaining an exploit, which depends on whether an exploit is publicly 
available. Second is the difficultly associated with using the exploit. As is the case with 
legitimate businesses, criminal organizations have operational processes that are built up 
around repeatable sets of circumstances and automatable tasks. 

Vulnerabilities that fit into existing processes and that can use existing automation are easy 
for criminals to monetize. Vulnerabilities that require the development of new processes or 
software are much less likely to present an attractive opportunity to criminals, particularly if 
they represent a one-of-a-kind set of circumstances that is unlikely to be repeated in the 
future. Even when it makes sense for criminals to develop a new attack methodology to 
exploit a new class of vulnerabilities, widespread attacks usually take longer to emerge than 
vulnerabilities that fit directly into an existing process.

Making money
Just as in any business, criminal organizations must calculate the value of a potential attack 
to judge whether it is worthwhile to pursue. To compare calculating the value of an attack with 
calculating the value of creating a Web application, we first look at the value of a Web 
application. How do we determine the value of our Web applications?

Value of presenting information to potential customers? $10
Value of reducing costs through account self-service? $100
Value of delivering business functionality in a rich UI? $1000
Value of creating a rich, collaborative, user community? Priceless!

From this calculation, it becomes clear that the rich, collaborative, user community is the way 
to go if criminal organizations want to make money in this business. Pursuing the rich, 
collaborative user community will most likely happen despite the security concerns the fearful 
security person might have. This person will try to stand in the way of rich interactive 
environments because they can pose a real threat. However, trade-offs must be made to 
correctly recognize the value. 

When looking at the business model of a criminal organization, we can do a similar 
calculation to discover its value:

Value of stealing a single credit card number? $0.10
Value of stealing a single e-mail password? $4
Value of stealing a person’s bank account credentials?  $10
Value of an automated random attack system collecting tradable information? Priceless!

Since criminal organizations often make money from trading the information they get by 
attacking Web applications, we use the current trading values of these types of information as 
shown in Table 1 on page 6 to make our calculation.2 The table shows information about 
different goods, how often they are requested and sold, and their price range.

2  The information in Table 1 on page 6 was published by Symantec™ in Symantec Report on the Underground 
Economy: November, 2008, p. 20 (http://eval.symantec.com/mktginfo/enterprise/white_papers/
b-whitepaper_underground_economy_report_11-2008-14525717.en-us.pdf). Reprinted by Permission.
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Table 1   Goods and services for sale and requested

Since the trading prices of individual pieces of information is relatively low, the real money is 
made by trading large volumes of data. Therefore, attackers must make a trade-off between 
the cost of attacking and collecting data and the value of that data on the market. 

Just as in any business, automation is a tool that is used for cutting the costs. For that reason, 
organized crime poses the biggest threat to any organization since organized crime does not 
care who it steals from, as long as it can keep costs low. 

This brings us back to the probability of the exploitation of an existing vulnerability in your 
Web application. If you can place a check mark in each of criteria shown in Figure 1 for your 
organization, consider the chances that an automated tool hacks into your application to steal 
information or use you as a malware distributor significantly high.

Figure 1   Exploitation probability of a vulnerability in your Web applications3

Rank for 
sale

Rank 
requested

Goods and 
services

Percentage 
for sale

Percentage 
requested

Range of prices

1 1 Bank account 
credentials

18% 14% $10 - $1.000

2 2 Credit cards with 
CVV2 numbers

16% 13% $0.50 - $12

3 5 Credit cards 13% 8% $0.10 - $25

4 6 E-mail addresses 6% 7% $0.30/MB - $40/MB

5 14 E-mail passwords 6% 2% $4 - $30

6 3 Full identities 5% 9% $0.90 - $25

7 4 Cash-out services 5% 8% 8% - 50% of total value

8 12 Proxies 4% 3% $0.30 - $20

9 8 Scams 3% 6% $2.50 - $100/ week for hosting 
$5 - $20 for design

10 7 Mailers 3% 6% $1 - $25

3  Published by IBM X-Force in January 2009.
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Impact on your organization

Now that we have a clear understanding of the motivations of a criminal organization to target 
any organization, including yours, we look at the kind of damage that successful attacks can 
do to your organization. Unfortunately, there are many ways in which your company can 
sustain damage from successful attacks. Data loss, brand damage, and unknowingly helping 
criminals are three of the most common ways in which your organization can be impacted by 
successful attacks.

Data loss 
A directly noticeable impact of successful attack is data loss. Data loss occurs when attackers 
break into your system and steal data from your machines after which they delete. When you 
use your machines after the attack, this data is no longer available to your business, which 
can make it impossible for you to continue doing your current business the way you have done 
it before. Imagine the impact of losing all your customer records and how this might be a 
tremendous loss for your company.

Brand damage
A bit more long-term damage is the damage that attackers can do to your brand. Attackers 
can potentially deface your Web site, steal a huge amount of your data, make it publicly 
available, and so on. All of these actions can potentially receive widespread attention and 
reach your customers. This can give your brand a negative image and make it harder for you 
to keep existing customers or to attract new ones.

Unknowingly helping criminals
Even if criminals do not steal any data or deface your Web site, they can still use your 
machines as hosts for spreading their malware. If this is discovered and made publicly 
available, this can lead from brand damage as explained in the previous section. However, 
even if this is not made publicly available, you are unknowingly helping criminals to attack 
your customers, which can have tremendous legal repercussions on your business.

Trends and statistics

Unfortunately quantifiable numbers regarding security breaches are difficult to find because 
many companies prefer to keep this kind of information secret. The main motivation for 
secrecy is the brand damage they might incur from revealing the specifics of the breaches. 
However, some alarming security trends and statistics have been reported in public forms, 
which we discuss in the sections that follow.

Increasing focus on Web applications
Research published by the IBM Internet Security Systems X-Force research team [1] shows 
the tremendous growth of reported Web application vulnerabilities as a percentage of all 
reported security vulnerabilities over the past five years. In fact, more than 54% of all 
vulnerabilities found since 2006 can be in commercial and open source Web applications. 
This percentage should not be surprising given the enormous push to more broadly enable 
business functionality through the Web and drive growth in this challenging market. 

As a result, several Web application vendors have made it to the top 10 list of the vendors with 
the most vulnerability disclosures in 2008, where this list previously was dominated by larger 
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non-Web related vendors. Figure 2 illustrates the explosive rise in discovered Web application 
vulnerabilities between 1998 and 2008.

Figure 2   Cumulative count of Web application vulnerabilities4

According to Mitre Common Vulnerabilities Enumeration (CVE) [5], a list of known security 
vulnerabilities sponsored by the National Cyber Security Division and the U.S. Department of 
Homeland Security, the total number of publicly reported Web application vulnerabilities has 
risen sharply. The number has risen to the point where it has overtaken buffer overflows, 
which is one of the most commonly found security vulnerabilities in software. This increase is 
most likely because of the ease of detection and exploitation of Web vulnerabilities, combined 
with the proliferation of low-grade software applications written by inexperienced developers. 
In turn, the increase is caused by the ease of creating small simple Web applications. Despite 
this simplicity, developing secure high-grade Web applications remains a complex problem. 

In Web application security, there are a couple of often reoccurring vulnerabilities. The top 
three most important vulnerabilities are SQL injection, XSS, and file include. Figure 3 shows 
an overview of the trends of these vulnerabilities between 2004 and 2008. You can see how 
the top three vulnerabilities take up to 70 to 80% of all discovered vulnerabilities.

Figure 3   Web application vulnerabilities by attack technique, 2004 - 20085

4  Published by IBM X-Force in January 2009.
5  Ibid.
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In this guide, we restrict the discussion to SQL injection and XSS because they were 
respectively the number one and number two vulnerabilities in 2008. For further information 
about file include, see the IBM Internet Security Systems X-Force 2008 Trend & Risk Report [1].

Probability of attack
The question remains: What percentage of these vulnerabilities will actually be exploited in an 
attack? The hard reality is that malicious attackers have also noticed the omnipresence of 
Web application vulnerabilities on security issues lists. Gartner has estimated that 75% of 
online attacks are now focused on Web applications [6]. Couple this statistic with the alarming 
realization that most security dollars are spent on the underlying network, not on the 
application, and there is evidence of a potential problem. Web applications have become a 
target of attack, regardless of whether it is for financial gain, political motivation, or a means 
for some individuals to have fun.

Likelihood of vulnerability in custom Web applications
Based on the previous statistics, it has become clear that security issues are often found and 
reported in commercially packaged or open source software. However, this does little to help 
the organization understand the likelihood of vulnerabilities in outsourced or internally 
developed applications. A broad analysis of 32,717 applications in 2007 by the Web 
Application Security Consortium (WASC) [7] revealed that 96.85% of these applications had 
at least one high severity vulnerability. XSS vulnerabilities were found in 58.11% of the 
applications, and SQL injection vulnerabilities were found in 25.30% of the applications. 
Therefore, the chances that there are vulnerabilities in your custom Web applications should 
be considered significantly high.

Pinpointing Web application weaknesses

In this section, we provide technical background on the weak points of Web applications. We 
give an overview of the most significant places where Web applications can be attacked and 
provide insight into the details of two of the most common attacks on Web applications.

What can go wrong in Web applications?

Web applications have several areas in which things can go wrong. The main trouble points 
are unsafe data transfer, lack of input validation at the server-side, and lack of control over the 
client side. 

Unsafe data transfer
Data can be stolen as it crosses the network. In most Web applications, the data packets that 
pass between the client and server are transmitted across an uncontrolled and untrusted 
network. For example, if you open a browser and request a page from a stock trader, the 
request is broken down into packets and transmitted across the public Internet, with 
numerous routers and switches in the middle. While scalable, the model used for Internet 
transport leaves the data vulnerable to man-in-the-middle (MITM) [8] attacks. In this type of 
attack, the attacker is in between the starting point and endpoint of the data transmission and 
monitors or modifies the data it passes. For example, an attacker can modify the content of 
the stocks news, hoping to influence any decisions the receiver might take based on the 
falsified content.

A non-technological parallel is your mail carrier. Even if you know and trust the individual who 
picks up your mail each day, you do not know what happens between the time your mail 
leaves your mailbox and the time it arrives at its destination. For example, the letter might 

 

 

 

Improving Your Web Application Software Development Life Cycle’s Security Posture 9



 

have been steamed open or exposed to light imaging technology. Also, another person might 
be involved in the transit of that one letter. In both cases, security technologies are necessary 
to protect the integrity of the content during the transmission.

Lack of input filtering at the server side
Server-side application security is a large and complex topic that cannot be exhausted in this 
guide. An application, by definition, receives input from the user and takes action based on 
that input. The input might be a page request, a key stroke, a click, or a form submission. 
Each of these inputs is processed by the server. If the input is not handled securely, it might 
be used to subvert or manipulate the application in unintended ways.

We can extend the example of the mail carrier to include an attack on the mail infrastructure. 
Suppose that the mail carrier does not properly filter incoming mail packages by properly 
x-raying it and checking it for explosives. This mail carrier can be attacked by sending a 
package with a bomb inside. It is easy to imagine how improper filtering of mail packages can 
have a devastating impact on the mail carrier.

Lack of control over the client side
Although the server side used to be a popular place of attacks, an increasing number of 
attacks are no longer directed at the server, but at the client. This is especially true in newer 
Web 2.0 applications because these applications have moved more of the logic toward the 
client side to increase the responsiveness of the applications. While you might have strong 
security controls over your application code and environment, it is almost impossible to 
control the behavior of either the client individual or the client machine. As a result, many 
things can go wrong.

Again we further explore the mail carrier example in light of client-side attacks. Suppose that 
the attacker has a specific receiver in mind. This receiver might be attacked by creating a 
specially crafted letter, for example one that contains anthrax, that will attack the receiver as 
soon as the letter reaches its destination. 

Web application vulnerabilities

In the following sections, we look at two of the most used Web application vulnerabilities and 
point you to where you can find a fuller list of vulnerabilities.

SQL injection
Since a variety of documents exist on the Web that explain SQL injection extensively [9-11], 
we do not go into details about all aspects of SQL injection. However, by means of an 
example, we illustrate how SQL injection works and show how it can impact your 
organization. 

Consider an application with a custom login form that includes a user name and password. In 
order for the system to authenticate the user, a query is sent to a database that says: “Does 
user X have password Y?” If the result of this query is true, the user X is authenticated. If the 
result is false, the user is rejected. 

Now suppose that the server side did not do proper validation and allows somebody to create 
the following query: “Does user X have password Y or did I enter X as the user name?”6 
Instead of simply providing Y as the password, the malicious user makes sure that the query 
always returns true when considered as one query. Example 1 on page 11 shows the SQL 
query that is associated with this example.

6  To make it visually clear what is happening, we placed the input from the user in italics.
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Example 1   SQL query for logging into a Web application

SELECT userid, full_name
 FROM members
 WHERE username = 'X' AND password = 'Y'

To successfully attack this query, the attacker must ensure that the input provided breaks out 
of the currently predefined set of commands in the SQL query (SELECT, FROM, WHERE, 
AND) and inserts the attacker’s own commands. As soon as the attacker is capable of 
breaking the predefined structure, this person can manipulate the query into returning the 
desired results. The attacker will have the same permissions as the process for executing the 
SQL command and can then perform a variety of actions with your database. 

Now let us assume that our server does not do any validation and that all input for the user 
name and the password fields is directly redirected into X and Y. The attacker can then 
ensure that this query is always true by using single quotation marks to break out of the 
predefined commands and inject the attacker’s own commands. 

Injecting malicious input into Y can result in a query similar to the one in Example 2 that can 
always authenticate the attacker.

Example 2   Malicious input breaks our SQL query

SELECT userid, full_name
 FROM members
 WHERE username = 'X' AND password = 'Y' OR 'X' = 'X'

The list of things that an attacker can do by injecting malicious input into SQL queries is 
virtually unlimited. Basically an attacker has the same access rights as the process that 
executes the query and can also do anything that this process can do. To attack your 
organization, the attacker creates a variety of input values in attempts to discover which 
characters you allow in your queries. Afterwards the attacker tries to learn the database 
structure and attempts to exploit this knowledge to obtain table names, user names, and 
passwords. The attacker might even destroy the entire database. If your company does not 
possess any valuable data for the attacker, this person can use SQL injection attacks to inject 
malware into your pages and use your Web site as a distribution platform for attacks on your 
Web site visitors. Because of the power and ease of automation, this attack was the most 
popular type of attack in 2008.

Unfortunately injection flaws are not limited to databases, but can include file system 
injection, Mail (MX) injection, Extensible Markup Language (XML) injection, Lightweight 
Directory Access Protocol (LDAP) injection, and server-side include (SSI) injection to name a 
few. If the server does not correctly handle all application input, the application environment 
can be compromised, business logic subverted, or protected data exposed.

Cross-site scripting
Because XSS attacks are widespread, a lot of material is available on the Web [12, 13] for this 
type of attack. We take the same approach as for SQL injection and provide an example that 
explains how attackers can potentially exploit this type of vulnerability.

Consider a support forum. If the input to this forum is not properly filtered, a malicious user 
can post arbitrary HTML on the forum. When another user looks at the forum, the HTML code 
is displayed to the user. If the HTML code contains a script, this script is executed each time a 
user visits the post on the forum. Example 3 on page 12 illustrates how an attacker can insert 
a pop-up message that is displayed to anyone who visits this post.
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Example 3   Message posted unfiltered on a forum in which an alert is displayed for every viewer

Hello everybody,
Thank you very much for helping me out. Due to your suggestions I was able to 
figure out how to solve my problems.
Thanks, Evil Bob
<script> alert(“Don’t you like Evil Bob?”);</script>

At first sight, it does not appear that XSS vulnerabilities in your Web site can have a high 
impact on your users. However, if XSS attacks are taken to their maximal extent, they can be 
just as dangerous as SQL injections or maybe even more dangerous. Depending on the 
sophistication of your attacker, there are different levels of control over your users that the 
attacker can acquire by injecting code into your pages:

1. The most basic attacks inject pieces of data into your Web pages in order to deface them. 
Typical examples of this are injecting messages such as “you’ve been hacked,” inserting 
pictures, and so on.

2. At the next level, your attacker might try to influence your user by providing wrong or 
misleading information. An example is providing false information of the evolution of your 
stocks, falsifying your online annual reports, and so on.

3. At a third level, the attacker might try to interfere with the normal usage of your Web site. 
The attacker might use the XSS vulnerability to inject code that makes the Web site 
behave in a strange way or makes it unusable. Examples of this are generating thousands 
of pop-up messages, redefining where your links point to, and so on.

4. A more sophisticated attacker might exploit XSS to steal identities. By injecting code that 
runs on the page while the user is logged in, the attacker can use a key logger to intercept 
passwords and steal your users’ identities.

5. At the fifth level, the attacker monitors your users as they use your Web site. An advanced 
XSS attack allows an attacker to monitor every action your user is taking. The attacker 
sees every page that the user sees and possess all the information that the user has 
entered (including their user name, password, credit card information, addresses, and so 
on).

6. In the final step, the attacker can fully take control over the user’s environment. By 
controlling the user, the attacker can make decisions on his behalf, navigate to different 
parts of your Web site, purchase goods, and so on.

Other vulnerabilities
The full list of vulnerabilities to which Web applications are currently exposed is much longer 
than we can describe in this guide. For more information, see the Web pages of the Open 
Web Application Security Project (OWASP) [14] and the Web Application Security 
Consortium (WASC) [15].

Protecting your Web applications from attacks

Similar to the way in which we must look at every aspect of the Web application to find the 
highest number of vulnerabilities, is the way that we must cover every aspect of the software 
development life cycle to build our Web applications as secure as possible.

In the first part of this section, we give an overview of the different pain points in the software 
development life cycle, introduce the different ways to test software security, and highlight the 
two most important best practices. In the second part of this section, we start with a general 
introduction of the IBM Rational tools that can assist you in securing your software 

 

 

 

Improving Your Web Application Software Development Life Cycle’s Security Posture 12



 

development life cycle. Then we go into detail about the IBM Rational AppScan product line, 
describe their different versions, and explain how to integrate them into your software 
development life cycle. In doing so, we show you how you can build a security ecosystem for 
developing your Web applications.

Securing the software development life cycle

The software development life cycle consists of three phases: 

� Design phase
� Development phase
� Delivery phase

Each phase plays a role in the quality of the overall security of your final product and, 
therefore, must be considered from a security perspective.

Design phase
The design phase in the software development life cycle consists of creating requirements 
and designing the architecture of the application. To secure the software development life 
cycle, both the requirements and architecture design must be performed with security in 
mind. Almost every application suffers the potential of greatest weakness if the requirements 
and the architecture are not clearly designed, planned, and executed. 

Within the scuba diving community, there is an important mantra, “plan the dive, and dive the 
plan.” Failure to plan can result in serious consequences. While human life is not usually at 
stake, the same principle holds true for Web applications. The most catastrophic failures in 
software have occurred when the plan for the software is not robust and secure by design. 
Such a plan can be created by having a decent set of requirements and a design that fulfills 
them. To assist with this process, various IBM Rational tools can be used.

Consider a common scenario that relates to authentication. Research in the United States 
has shown that one in nine people uses one of the 500 most common passwords and that 
one of every 50 people uses one of the top 20 passwords. This is a big security problem, 
because for hackers, it is easy for them to use brute force passwords if they are on the 500 
most common passwords list. 

The commonly used way to counter this problem is to lock out any account that has too many 
failed attempts in a short period of time. However, hackers can try to avoid lockout by trying 
the most common passwords with different user names. There is little you can do since you 
do not want to lock out all accounts. Nor do you want to disable access from the attacking IP 
address out of fear that this will block legitimate users from coming through the same 
gateway. 

Therefore, designing an application securely is essential. Having a requirement that your 
system cannot accept easy-to-guess passwords might be sufficient to prevent this. Of course, 
this requirement must be implemented correctly, which brings us to the next phase in the 
software development life cycle, which is the development phase.
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Development phase
The development phase is a three-step process in which code is written, built, and tested. 
Although many software development groups recognize the need for developing an 
application securely, experience has proven that developing a secure application is more than 
a little difficult. In fact, most of the reported vulnerabilities are the result of poor development 
practices. A typical example of a bad development practice is an inexperienced developer 
who writes a custom component and along the way introduces a security vulnerability into the 
application. A much better practice is to use an existing, proven component from a mature 
framework that has been thoroughly tested for security vulnerabilities. In addition, educating 
the developer on secure development practices pays off in the future.

With the fast changing rich Web 2.0 UI designs, the imperative for secure code development 
becomes even more critical. The continuously changing Web 2.0 designs leave little space for 
thorough testing. On top of this, to maximize interactivity, a large part of the application code 
is run on the client browser and, therefore, can easily be viewed by the user. The organization 
must assume that the user will intentionally tamper with the exposed application business 
logic and try to exploit it to its own advantage.7 By integrating the right tools into the 
development process, many of the security-related tasks can be automated during the 
coding, building, and testing of your Web applications.

Delivery phase
The most securely designed and developed software fails to be secure when it is delivered in 
an insecure environment. This includes (but is not limited to) the hardening of the application 
infrastructure, protection of the data as it crosses the network, the defense of the production 
environment, and a patching and update strategy for the supporting operating system and 
components. 

For example, failure to configure the Web server to deny access to the directory structure can 
allow a malicious user to gain direct access to sensitive information and application code. 
Therefore, a secure delivery phase exists from the final audit of the security of the application 
in its delivery environment and afterwards maintaining the security level of the operating 
environment. Again, a wide variety of tools can be used to automate these tasks.

Shades of analysis

The tools used in the software development life cycle for analyzing the security of your Web 
applications can be roughly divided into three different types of tools: 

� White box analysis tools
� Black box analysis tools
� Gray box analysis tools

Their distinction is made based on the amount of information about the system and software 
that is available to these tools when performing their security analysis. White box analysis has 
the highest access to this information and can be seen as approaching security from the 
developer’s perspective. Black box analysis starts from the perspective of an attacker with no 
access to any of this information. Gray box analysis combines both black box and white box 
analysis to improve accuracy and coverage.

7  A good example of hackers reverse engineering business logic based on visible client-side logic is the 2007 attack 
that allowed hackers to obtain the discount codes for free VIP passes to Macworld 2007 [16].
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White box analysis
With white box analysis, all relevant information about the system or software is known and 
available to the tester. This approach to analysis is common in the quality assurance space 
where the people responsible for the software have access to both the design documentation 
and the source code. With the exception of open source software, this information is not 
generally exposed beyond a defined group of individuals.

Given the relevant information, white box analysis tends to be comprehensive. It can quickly 
uncover potentially obscured interfaces that are not visible to the outsider. White box analysis 
can quickly determine the complete attack surface and create the necessary set of tests.

It is important in white box analysis not to put too much emphasis on either the design 
specification or the source code. Placing too much emphasis on the design specification can 
lead the tester to miss functionality that has been built outside of this document or that has 
been implemented incorrectly. Placing too much emphasis on the source code can lead the 
tester to miss critical exposures that are related to the architecture or the way in which the 
system was designed.

White box analysis includes the following the three primary techniques:

� Architectural analysis, which is often referred to as threat modeling, seeks to enumerate 
the goals an attacker has within the software and introduces countermeasures for each of 
these threats

� Source code analysis, which scans the source code and traces user input through the 
application to find vulnerabilities and bad coding practices

� Static binary analysis, which operates similar to source code analysis but at the binary 
level, which allows it to find contextual risks and platform-specific problems

White box analysis offers the following benefits:

� All relevant information is available to the tester.
� Logical design flaws can be determined.
� It is simple to quickly document the entire attack surface.
� It is effective at finding programming and implementation errors.

White box analysis includes the following challenges:

� Poor coding practices can falsely be detected as vulnerabilities.
� Software cannot be easily tested remotely in a distributed environment.
� Access to the design specifications and source code is not always possible.

An example of white box analysis is running a source code scanner during development.

Black box analysis
Black box analysis involves examining the software or system with no prior knowledge of the 
environment. This type of analysis is similar to what an outside attacker might do. Using 
automated tools and manual techniques, the analysis begins by detecting the attack surface 
and probing the system for relevant information. 

A fundamental concept of black box analysis is to understand the system as fully as possible 
before actually testing for security issues. Information disclosure and improperly configured 
systems can be especially helpful in building this knowledge. This foundational understanding 
of the software or system allows the tester to be more efficient during the testing phases.

When an organization is sensitive to the outsider threat, black box analysis is often the first 
analysis approach. The risk findings from this analysis and testing are often prioritized 
because it more accurately reflects the immediate risk posed by the outsider.
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Black box analysis includes the following two primary techniques:

� Vulnerability scanning, which is realized by using a large database of known 
vulnerabilities and trying to identify a known vulnerability in an application. This can be 
either passive, for example by searching for a version number in a Web page, or active, for 
example by trying to exploit a vulnerability and searching for a known exploitation result.

� Dynamic analysis, which is often referred to as Web application scanning. It tries to 
automatically scan and document the attack surface, test the application by means of fault 
injection, and determine the presence of a vulnerability based on the response. The main 
difference between this type of analysis and vulnerability scanning is that dynamic 
analysis can discover unknown vulnerabilities, where vulnerability scanning only tests for 
known ones.

Black box analysis includes the following benefits:

� Testing deployed software allows for high levels of confidence in the results.
� There is no need for access to design specifications or source code.
� Software can easily be tested across the network.
� Testing in the deployed environment allows for environmental analysis.

Black box analysis include the following challenges:

� It is impossible to determine code coverage; obscured or hidden functionality can be 
missed.

� Logical design flaws cannot be detected easily.

An example of black box analysis is running a Web application scanner against a deployed 
application in the delivery phase.

Gray box analysis
Both white box and black box analysis can reveal possible software risks and potential 
exploits. White box analysis has guaranteed code coverage but a hard-to-measure risk. Black 
box analysis guarantees the ability to identify real problems but at the cost of unknown code 
coverage. The use of gray box techniques combines both white and black box analysis 
methods in a powerful way. The benefits of both approaches can be obtained while 
minimizing the potential that important issues are missed.

The challenge of deploying gray box analysis is that it usually requires correlating the result 
sets that are obtained in different phases of the software development life cycle. It can be 
difficult to adopt a successful gray box analysis strategy without a corporate culture shift. The 
highest chances of success are realized when gray box analysis becomes a fundamental part 
of the software development life cycle, allowing for smooth integration of different test results 
obtained throughout the life cycle.

Using the security analysis techniques in your development
When looking at the broader picture of the software development life cycle, we can see that 
each of the security analysis techniques have their function in the software development life 
cycle. For complete coverage, you must combine white box and black box testing into one 
security testing solution as part of the software development life cycle. 

Note: A more common way to use these terms is to differentiate between source code 
access (white box) and no source code access (black box). While this is not accurate in the 
purist sense, it is often the popular nomenclature.
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Figure 4 shows how architectural analysis, source code analysis, dynamic analysis, binary 
analysis, and vulnerability scanning can be used and combined throughout the design, 
development, and delivery phases. It is important to realize that security testing is not 
something that can be done only at the end of your software development life cycle just before 
the product release. Although a thorough security audit during the delivery phase is an 
important aspect in securing your software properly, security must be integrated into every 
step of the development life cycle. 

Architectural security analysis should be a part of your design phase. Source code analysis 
should be integrated into your development phase. Dynamic analysis starts in the 
development phase and lasts all the way to your delivery phase. Binary analysis is something 
that you typically do once during the audit part of the delivery phase for each new build of 
your software. Finally vulnerability scanning is a repeating task that should be done 
periodically as long as your software is operational.

Figure 4   The different types of security analysis throughout the software development life cycle 

Two important best practices

Let us take a closer look at two of the important best practices:

� Defining clear security requirements 
� Maximizing automatic testing of those requirements

Defining clear security requirements
To clearly define security requirements, it is important to know exactly what a security 
requirement is. Despite the fact that they serve a fundamentally different purpose, security 
requirements are often confused with security features. The difference can be made clear 
with the following two definitions:

� Security requirements are tasks that must be done. For example, all passwords must be 
stored as encrypted. A security requirement typically does not indicate how this is done, 
such as indicating which software to use to do the encryption.

Requirements Design Code Build Test Audit Operations

Design Develop Deliver

Vulnerability Scanning

Binary Analysis

Vulnerability Scanning

Dynamic Analysis

Source Code Analysis

Architectural Analysis
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� Security features are functionalities that must be available. For example, account 
management must be possible through a Web interface.

Similar to functional requirements or performance requirements, security requirements are 
needed to ensure that security is built into the application from the start. Security 
requirements define what new security features are required and how existing features should 
be changed to include necessary security properties. The objective of security requirements 
is to ensure that the application can defend itself from attacks. You must consider the nine 
categories of security requirements, as explained in the following sections, when building a 
Web application. 

Auditing and logging
While people often depend upon network and packet logs for forensics analysis, it is equally 
important that an application has an internal logging ability for events that are important to the 
confidentiality, availability, and integrity of the software.

For example, the application requires an audit log. Logged events must include the current 
session token (if available), IP address, and time. The events that must be logged include 
account authentication attempts, account lockouts, application errors, and input values that 
do not match the specified validation routines.

Authentication
Because most applications have access control restrictions to prevent confidentiality 
breaches, it is important that these access control mechanisms cannot be reverse engineered 
or manipulated to allow unauthorized access. 

For example, strong passwords are required. Any authentication credentials must contain the 
appropriate strength, including uppercase, lowercase, and numeric characters, and be no 
fewer than eight characters in length.

Session management
The HTTP protocol was not originally engineered in a way that easily allows a session to be 
tracked over the duration of an application session. This led to session management 
capabilities to be built on top of the HTTP protocol. 

An example requirement might be that the application must remain available to legitimate 
users. All resource utilization by remote sessions must be monitored and limited to prevent or 
mitigate attacks on application availability.

Input validation and output encoding
While most design-level security flaws are discovered and mitigated during the modeling and 
architecture phases, most development and delivery security issues are introduced because 
of poor input validation and output encoding. It is critical that any user-supplied data goes 
through the appropriate validations. 

For example, all input must be validated through a central validation control.

Exception management
In the purist sense, it is impossible for an application to be completely secure. However, it is 
most often acceptable to be “secure enough.” Hiding detailed application exceptions or 
over-specific error messages can go a long way toward increasing the time required to 
compromise an application. 

As an example, a security requirement in this context is that all error messages should be 
trapped and logged in the secure audit log. 
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Cryptography
Secure cryptographic algorithms are notoriously difficult to create and implement. It is 
extremely important that an organization choose the industry supported algorithm that meets 
the need of the business. 

An example security requirement might be that all cryptography algorithms used within the 
application must be Federal Information Processing Standards (FIPS) [17] approved and 
compliant.

Data at rest
While all applications attempt to secure the data in the back-end repository, it is best to 
assume that, at some point, this data store will be leaked. Defense in depth dictates that any 
sensitive data be encrypted for this eventuality. 

One requirement might be that, if the application contains sensitive user information that must 
be protected for regulatory compliance, strong encryption must be used to protect the 
sensitive user information such as name, user name, address, and financial data.

Data in motion
As long as software applications are implemented, there are known attacks against the 
software architectures that require transmission of data across networks or systems. It is 
critical that all application data be properly protected as it crosses both open and closed 
networks and systems. 

A security requirement for such a system might be that, if the application transmits sensitive 
user information over untrusted or unsecured networks, then all communication channels 
must be encrypted.

Configuration management
New vulnerabilities appear daily, highlighting weaknesses in common infrastructure 
components. While some of these issues can be corrected through patching, it is sometimes 
a requirement that these options be available to the user for specific deployments. It is critical 
that the underlying systems be balanced in such a way that it meets the application business 
need, while protecting the application and infrastructure. 

An example security requirement is that administrative interfaces must be separate from 
non-administrative interfaces.

Maximizing automatic testing of those requirements
After you define a clear set of security requirements, it is important to have a solid process in 
place to check if these requirements are correctly used throughout your development life 
cycle. If you think back about the motivations of attackers and the way they operate, it comes 
to mind that they try to cut costs by automating attacks on your Web applications. 

In the same way as your attackers automate their tasks, is possible for you to automate the 
testing of your security requirements and verify the correctness of their implementation. In 
fact, if you make sure that vulnerabilities that are easily found in an automated fashion are no 
longer present in your Web applications, you will have eliminated a high percentage of 
possible attacks. 

Therefore, it is a good practice to make sure that you use automated testing to secure your 
Web applications. Since automated testing cannot cover all vulnerabilities, if necessary, this 
testing can be augmented with manual ethical hacking and manual code revisions based on 
your business requirements. In the next section, we show you how you can use IBM Rational 
AppScan products to automate security testing in your development life cycle.
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The IBM Rational AppScan software suite

IBM Rational AppScan is a suite of Web application security testing products that are used to 
automate application scanning and vulnerability identification. The Rational AppScan 
products scan and test for a wide range of Web application vulnerabilities, including those 
identified by the Web Application Security Consortium (WASC) threat classification and the 
Open Web Application Security Project. The Rational AppScan product line contains a wide 
variety of products, each of them adapted to the needs of a specific user. 

In the remainder of this section, we discuss the main editions in order of their appearance in 
the software development life cycle. For more information about the full set of Rational 
AppScan products, see the following address:

http://www.ibm.com/software/awdtools/appscan/

Rational AppScan Developer Edition
The first user targeted by the Rational AppScan product line is the developer. The most 
efficient way to stay ahead of application security vulnerabilities is to build software securely 
from the ground up. The challenge is that most developers are not security experts, and 
writing secure code is not always their top priority. Therefore, the best way to engage 
development in the process of application security is to provide them with tools that work in 
their environment and that generate results in languages they understand. 

IBM Rational AppScan Developer Edition is designed to empower developers to invoke Web 
application security testing from within their development environment. It enables addressing 
the volume of security issues that can be introduced in code at an early point, streamlining 
the development life cycle workflow, and helping to reduce security testing bottlenecks that 
can occur at the end of the release cycle. Rational AppScan Developer Edition uses a range 
of analysis techniques to accurately pinpoint security issues in your Web applications, 
including static code analysis, dynamic analysis, run-time analysis, and string analysis.

When it comes to security testing, the needs of the developer are quite different from those of, 
for example, the security auditor. Rational AppScan Developer Edition is meant to be used as 
a development tool. Therefore, its focus is on ease of use and ease of integration into the 
development process. The features to minimize false positives and provide 
easy-to-understand results are given higher priority than those to increase the breadth of a 
scan, which can complicate security testing. Collaboration and sharing of configurations and 
results are a core part of the product, and reuse of a scan configuration helps provide 
consistent, repeatable scans on each application.

The developer edition is designed with automation in mind. Automating code analysis 
configuration for greater ease of use and accuracy is realized by using string analysis, which 
is a new technology invented in collaboration with IBM Research. String analysis presents a 
breakthrough in the field of static code analysis by helping to solve the biggest challenge that 
plagues current security code scanning solutions, which is false positives. Until now, the most 
advanced technique for analyzing code security, taint analysis, has tracked input values as 
they flow through the system. However, it relies on the developer to determine whether the 
data is properly sanitized by marking the sanitization functions. 

Therefore, the developer must know what foolproof sanitization is and must be able to 
configure it in detail for the analyzer tool to be accurate. These inherent limitations result in an 
overwhelming number of false positives, a frequent need to modify code to support the 
scanning tools, and the need to involve a security expert. String analysis automates these 
decisions, helping to eliminate false positives and supporting the different methods of 
handling inputs. While taint analysis measures whether an input is tainted, string analysis can 
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determine exactly how the input is tainted, bringing static code analysis to new levels of 
accuracy.

In addition to the self-serve benefit of string analysis, Rational AppScan Developer Edition 
provides built-in training, accurate and prioritized results pointing straight to questionable 
lines of code, and detailed remediation advice with code samples. These intuitive, 
easy-to-use features allow developers to be self-sufficient in their daily handling of Web 
application security testing. 

Figure 5 shows a Rational AppScan Developer Edition scan report, illustrating how it links a 
white box issue and the affected line of code, allowing quick location and easy mitigation of 
the problem. Rational AppScan Developer Edition also has various capabilities of integrating 
with other products that are illustrated in the next section.

Figure 5   Completed scan report in Rational AppScan Developer Edition, with a white-box issue and the 
affected line of code

For more information about Rational AppScan Developer Edition, see the following Web 
address:

http://www.ibm.com/software/awdtools/appscan/developer/

Rational AppScan Build Edition
An additional way to use the vulnerability detection capabilities of Rational AppScan 
Developer Edition vulnerability scanning engines is to perform automated scanning during the 
builds. Integrating security into the build phase can be done by using IBM Rational AppScan 
Build Edition. By integrating with multiple build management systems, such as IBM Rational 
Build Forge® software, Rational AppScan Build Edition provides security testing coverage for 
scheduled builds. It includes the same set of analysis techniques as the Rational AppScan 
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Developer Edition and provides a high level of accuracy plus code coverage that helps you 
identify which code has been tested.

After scanning, Rational AppScan Build Edition routes the results back to development 
though defect-tracking solutions, such as IBM Rational ClearQuest® software, or through 
security reporting solutions, such as Rational AppScan Enterprise Edition or Rational 
AppScan Reporting Console. Rational AppScan Build Edition also includes an application 
programming interface (API) and various other result formats to support the propagation of 
scan results to other repositories.

For more information about Rational AppScan Build Edition, see the following Web address:

http://www.ibm.com/software/awdtools/appscan/build/

Rational AppScan Standard Edition
The next user that IBM Rational AppScan products consider is the security auditor. To help 
this user, the IBM Rational AppScan Standard Edition was created. To allow the security 
auditor to automate testing of the latest technologies, Rational AppScan Standard Edition 
supports the latest Web 2.0 technologies; parsing and execution of JavaScript™ and Adobe® 
Flash applications; asynchronous JavaScript and XML (AJAX) and Adobe Flex-related 
protocols, such as JavaScript Object Notation (JSON), Action Message Format (AMF), and 
SOAP; elaborate service-oriented architecture (SOA) environments; and custom 
configuration and reporting capabilities for mashups and process-driven applications. 

By automating many repetitive tasks, Rational AppScan Standard Edition reduces the costs 
that are associated with manual vulnerability testing. Whether you outsource your 
vulnerability testing or perform it manually in house, Rational AppScan Standard Edition 
dramatically reduces the time needed to perform a comprehensive vulnerability assessment 
of your applications. This enables you to evaluate your Web security posture on an ongoing 
basis, as opposed to performing quarterly or yearly audits, resulting in enhanced security 
levels and controllable costs.

The Rational AppScan Standard Edition scanning engine provides high levels of scan 
accuracy and dramatically limits false positives. To further improve accuracy and 
performance, it includes an adaptive test process that intelligently mimics human logic to 
adapt the testing phase to individual applications. Rational AppScan Standard Edition learns 
the application, down to the level of each specific parameter, and adjusts to perform only the 
tests that are relevant. To help ensure protection from the latest threats, Rational AppScan 
Standard Edition checks for attack signature updates from the IBM team of security research 
experts each time the software is launched.

One of the most critical aspects of Web vulnerability scanning is the quick remediation of 
issues. Rational AppScan Standard Edition provides a fully prioritized list of the vulnerabilities 
found with each scan, which enables high-priority problems to be fixed first, helping 
organizations to focus on what matters the most from a security perspective. Each 
vulnerability result includes a full description of how the vulnerability works and the potential 
causes. Integrated Web-based training provides short training modules directly from the user 
interface. The software’s remediation view then explains the steps that are required to 
remediate the issue, including examples of both secure and insecure code.
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Figure 6 shows a window from the Rational AppScan Standard Edition application.

Figure 6   Rational AppScan Standard Edition helping users to quickly identify, understand, prioritize, and fix critical Web 
vulnerabilities

Rational AppScan Standard Edition can also help organizations address critical compliance 
requirements, such as Payment Card Industry Data Security Standard (PCI DSS), by 
providing a way to support an ongoing level of application security. IBM is an approved 
scanning vendor (ASV) with its Rational AppScan Standard Edition offering, making the 
software a perfect choice for addressing application security requirements around PCI DSS. 

Rational AppScan Standard Edition can produce custom security reports and includes the ability 
to select which data points to include in each report. Users can also choose from more than 40 
predefined reports and map scan results to key industry and regulatory compliance standards. 
These include National Institute of Standards and Technology Special Publication (NIST SP) 
800-53 and the Open Web Application Security Project top 10, PCI DSS, Sarbanes-Oxley, 
Gramm-Leach-Bliley Act (GLBA), Health Insurance Portability and Accountability Act (HIPAA), 
Family Educational Rights and Privacy Act (FERPA), Freedom of Information and Protection of 
Privacy Act (FIPPA), and Payment Application Best Practices (PABP).

To customize and extend your testing for greater control, Rational AppScan Standard Edition 
includes a set of powerful customization features. The IBM Rational AppScan software 
development kit (SDK) offers a powerful set of interfaces that enable customizable invocation 
of each action in Rational AppScan Standard Edition, from the execution of a long scan to the 
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submission of an individual custom test. This platform enables easy integration into existing 
systems, supports advanced custom uses of the Rational AppScan engine, and provides the 
foundation for the Rational AppScan eXtensions Framework and Pyscan.

By automating Web application testing processes to help security auditors and penetration 
testers quickly and efficiently do their jobs, Rational AppScan Standard Edition, which is 
available as a desktop application or as Software as a Service (SaaS), assists in significantly 
raising the cost of attacks for your attackers, and therefore, no longer making your 
organization a valuable target.

For more information about Rational AppScan Standard Edition, see the following Web 
address:

http://www.ibm.com/software/awdtools/appscan/standard/

Rational AppScan Tester Edition
Let us take one step back from the delivery process into the development process and look at 
how we can integrate Rational AppScan products into the test phase. By using the same 
vulnerability detection capabilities as Rational AppScan Standard Edition, IBM Rational 
AppScan Tester Edition, which is available as a desktop application, offers capabilities to help 
quality assurance (QA) teams integrate security testing into existing quality management 
processes, thereby easing the burden on security professionals. Because Rational AppScan 
Tester Edition integrates with leading testing systems, QA professionals can use its 
functionality in test scripts. They can conduct security checks within their familiar testing 
environments, facilitating the adoption of security testing along with functional and 
performance testing. 

Given that QA organizations already know how to prioritize defects, make testing repeatable, 
and report on test coverage and release readiness, these teams are ideally suited to perform 
security testing. They can help scale security testing and find and remediate security 
vulnerabilities earlier in the application delivery process. They can do this while they are 
testing for functional and performance issues and prevent costly delays in your releases.

For more information about Rational AppScan Tester Edition, see the following Web address:

http://www.ibm.com/software/awdtools/appscan/tester/

Rational AppScan Enterprise Edition
IBM Rational AppScan Enterprise Edition is a Web-based, multi-user Web application 
vulnerability testing and reporting solution for organizations that need to scale application 
scanning across the organization while maintaining centralized control of vulnerability data. 
Rational AppScan Enterprise Edition includes QuickScan, a point-and-shoot testing tool, and 
integrated Computer Based Training to accelerate the adoption of security testing across the 
software development life cycle. 

In addition to its advanced application scanning, Rational AppScan Enterprise Edition 
provides sophisticated reporting and remediation capabilities and seamless integration with 
the desktop version of Rational AppScan, Rational AppScan Standard Edition. Rational 
AppScan Enterprise Edition helps users understand their overall security posture by 
generating executive security metrics, dashboards, and key regulatory compliance reports.

Rational AppScan’s scan engine operates by traversing a Web application, analyzing and 
testing the application for security and compliance issues, and generating actionable reports 
with fix recommendations to simplify the remediation process. These advanced fix 
recommendations deliver unmatched accuracy and efficiencies for developers and security 
auditors to help address and remediate vulnerabilities disclosed by the scan. Seamless 
integration with leading QA testing tools (including IBM Rational ClearQuest), development 
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environments, and code scanning devices further simplifies security testing and remediation 
by QA and development teams.

With its Web-based architecture, Rational AppScan Enterprise Edition is designed to help 
organizations distribute responsibility for security testing among multiple stakeholders. 
Rational AppScan Enterprise Edition is for teams who need to perform Web application 
security assessments in a centralized fashion and provides a fully integrated solution set. 
Figure 7 shows the Rational AppScan Enterprise Edition dashboard.

Figure 7   The IBM Rational AppScan Enterprise Edition dashboard view

For more information Rational AppScan Enterprise Edition, see the following Web address:

http://www.ibm.com/software/awdtools/appscan/enterprise/

Combining IBM Rational technologies into a comprehensive, integrated 
secure platform

From the previous section, you can see that the Rational AppScan product line by itself does 
not cover the full software development life cycle. To create a comprehensive, integrated 
secure development platform, Rational AppScan products are to be integrated with additional 
products. For example, at this point, we have not covered the requirements and design 
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phases, nor did we talk much about the products to track and report the vulnerabilities that 
were found by the AppScan products. 

In this section, we show how other IBM products can be integrated with the Rational AppScan 
product suite to create a fully secure development life cycle. While we present IBM Rational 
software products, it is also true that competitive technologies help to deliver the same end 
goal. Because not all technologies are created equal, we start with grouping the technologies 
into four tiers of importance. 

The first technology tier required for a secure software development life cycle should not be 
surprising: an integrated development environment, with source control and change request 
management. Almost every development shop recognizes the importance of code 
provisioning and tracking defects. Without a central repository to manage the code and 
defects, the building of software might be a completely ad hoc process. Such technologies as 
Rational Application Developer for WebSphere® Software, Rational ClearQuest, and Rational 
ClearCase® establish a baseline for repeatable, measurable software creation.

� IBM Rational Application Developer for WebSphere Software is designed to help 
developers quickly build high-quality Java™; Java Platform, Enterprise Edition (Java EE); 
Web; Web services; portal; and SOA solutions. The integrated development environment 
(IDE) assists in rapidly designing, developing, assembling, testing, and deploying these 
applications. The software’s visual tools help reduce manual coding by abstracting the 
Java EE programming model. They make it easier and faster to complete development 
projects and let you focus your efforts on creative software solutions.

For more information about Rational Application Developer for WebSphere Software, see 
the following Web address:

http://www.ibm.com/software/awdtools/developer/application/

� IBM Rational ClearCase is an industry-leading solution that provides sophisticated 
version control, workspace management, parallel development support, and build auditing 
to improve productivity. This comprehensive software configuration management offering 
delivers a strengthened, centralized deployment model that makes it even easier for global 
teams to coordinate efforts. As development teams continue to face greater pressure to 
deliver higher quality software faster than ever, Rational ClearCase can help simplify the 
software delivery process and boost productivity.

For more information about Rational ClearCase, see the following Web address:

http://www.ibm.com/software/awdtools/clearcase/

� IBM Rational ClearQuest provides change tracking, process automation, reporting, and 
life cycle traceability for better visibility and control of the software development life cycle. It 
is designed to help you manage the software life cycle more effectively. It gives you access 
to the information you need to make better decisions. It helps you to more effectively 
manage tasks and schedules, and respond rapidly to customer needs. The automated 
workflows of Rational ClearQuest can help you control and enforce development 
processes and help improve team communication, productivity, and quality. 

For more information about Rational ClearQuest, see the following Web address:

http://www.ibm.com/software/awdtools/clearquest/

The second tier of components deals with two additional categories: requirements and test 
management. A product such as Rational RequisitePro® allows business professionals and 
architects define explicit, measurable requirements within the software. The automated 
security testing products of the Rational AppScan product line allow automation to be 
effectively used at different software development life cycle phases to test for defined security 
vulnerabilities. All of this combined with a product such as Rational Quality Manager, which 
collects the information to one place, creates a system that tracks tests, test results, and 
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defects, as well as answers that last and final big question: Are we ready to ship? These top 
two tiers are the absolute minimum for delivering secure software.

� IBM Rational RequisitePro is designed for project teams who want to manage their 
requirements, write good use cases, improve traceability, strengthen collaboration, reduce 
project risk, and increase quality. It provides a scalable and fast Web interface for 
distributed teams and an enhanced, security-rich model for enterprise deployments. In 
doing so, it enables customized requirements access for business analysts, architects, 
designers, developers, and testers allowing integration in many phases of the secure 
software development life cycle.

For more information about Rational RequisitePro, see the following Web address:

http://www.ibm.com/software/awdtools/reqpro/

� IBM Rational Quality Manager is a Web-based centralized test management 
environment. It is for business, system, and IT decision makers and quality professionals 
who seek a collaborative and customizable solution for test planning, workflow control, 
tracking, and metrics reporting capable of quantifying how project decisions and 
deliverables impact and align with business objectives. It is designed to help teams 
collaborate by allowing them to seamlessly share information, use automation to 
accelerate project schedules, and report on project metrics for informed release decisions.

For more information about Rational Quality Manager, see the following Web address:

http://www.ibm.com/software/awdtools/rqm/

In recent years, there has been a shift of development from the traditional “Big Design Up 
Front” waterfall methodology, to the more iterative and incremental agile methodology. This 
shift has allowed businesses to realize real cost savings by answering critical questions about 
the software success and viability early on. It also allows them to react much quicker to 
customer suggestions and demands connected with the software. However, it also means 
that many more builds are created. 

A solution for this new way of building software is answered through a product such as 
Rational Build Forge. It allows the development team to maintain an automated build 
management system that provides instant feedback required for this new development 
methodology. The reason why this is considered an essential component for building secure 
software is that integration with Rational AppScan allows security analysis to be done 
iteratively on every build. It provides early and valuable feedback that reduces both costs and 
risk at the later stages of the software development life cycle.

� IBM Rational Build Forge is an adaptive process execution framework that automates, 
orchestrates, manages, and tracks all the processes between each hand-off within the 
assembly line of software development, creating an automated software factory. Rational 
Build Forge integrates into your current environment and supports major development 
languages, scripts, tools, and platforms. It allows you to continue to use your existing 
investments while adding valuable capabilities around process automation, acceleration, 
notification, and scheduling.

For more information about Rational Build Forge, see the following address:

http://www.ibm.com/software/awdtools/buildforge/

The next tier of components that directly relate to security is the architectural and asset 
management systems. Architectural management software, such as Rational Software 
Architect for WebSphere Software, allows development teams to quickly design and reuse 
proven secure designs that demonstrate secure interactions between components. Asset 
management systems, such as Rational Asset Manager, allow development teams to 
maintain a library of certified, secure components that developers can quickly turn to for 
common tasks, such as authentication, authorization, input validation, logging, auditing, and 
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so on, that if mistakenly implemented, can lead to system compromise. When this proven 
asset library does not meet the requirement and a custom component must be written, the 
security team can be called in to evaluate.

� IBM Rational Software Architect for WebSphere Software is a powerful, integrated design 
and development environment. It can help IT architects and developers understand, 
design, manage, and evolve solutions across the team, across the world, and across 
different areas of technical expertise. Its abstraction, analysis, and reporting capabilities 
are designed to enable more effective communication and collaboration. In addition, its 
automation and intelligent editing tools can help improve productivity, enhance 
architectural control, and ease the design-to-code experience for Java and Java EE, Web 
services, SOA, and Web 2.0 applications.

For more information about Rational Software Architect for WebSphere Software, see the 
following Web address:

http://www.ibm.com/software/awdtools/swarchitect/websphere/

� IBM Rational Asset Manager reduces software development costs and improves quality 
by facilitating the reuse of all types of software development related assets. It is a 
collaborative software development asset management solution that helps you locate, 
share, and trace assets across business and deployment teams. Rational Asset Manager 
allows organizationally distributed development teams to identify, manage, and govern the 
design, development, and consumption of software assets, including services as part of 
an SOA initiative. The software facilitates the development, deployment, and use of 
collaborative software assets, helping IT organizations deliver innovative IT solutions, 
while controlling costs, reducing application backlogs, and improving business flexibility 
and responsiveness.

For more information about Rational Asset Manager, see the following Web address:

http://www.ibm.com/software/awdtools/ram/

After you reach the stages of deployment within your operation environments, the last tier of 
products allows you to keep the delivered product and its data secure. IBM Optim™ Data 
Privacy Solution can ensure you that your client data is fully protected and masked in case of 
a leak. To automate the task of keeping your network within your enterprise safe, Proventia® 
Network Enterprise Scanner and Proventia Network MFS can be incorporated into your 
network infrastructure. To keep your servers and your desktops fully patched, IBM Tivoli® 
Security Compliance Manager provides a centralized solution to keep track of the security of 
your machines.
� IBM Optim Data Privacy Solution enables the safeguarding of the privacy of client data. 

De-identifying confidential data is one of the best ways to protect privacy and support 
compliance with regulations such as HIPAA, DDP, PIPEDA, PCI DSS, and others. Optim 
Data Privacy Solution delivers powerful data transformation capabilities to mask 
confidential corporate data, so that you can use it safely for application testing. You can 
safeguard vulnerable test environments by applying simple data masking techniques, or 
apply pre-packaged transformation algorithms for complex data elements such as credit 
card numbers, e-mail addresses, and national identifiers.

For more information about the Optim Data Privacy Solution, see the following Web 
address:

http://www.ibm.com/software/data/data-management/optim/data-privacy-solution/

� IBM Proventia Network Enterprise Scanner allows you to know what is on your network 
and where potential problems lie. This solution is essential to identifying and managing 
risk. Complying with security regulations and outlining remedies can be costly and labor 
intensive. Proventia Network Enterprise Scanner enables you to save both cost and time 
in managing your network vulnerabilities. Proventia Network Enterprise Scanner helps 
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ensure the availability of your revenue-producing services and protects your corporate 
data by identifying and prioritizing risks, assigning protection activities, and reporting on 
results.

For more information about Proventia Network Enterprise Scanner, see the following Web 
address:

http://www.ibm.com/services/us/index.wss/offering/iss/a1027216

� IBM Proventia Network Multi-Function Security (MFS) is a unified threat management 
(UTM) device that provides protection at the gateway and network levels without 
jeopardizing network bandwidth or availability. It combats a variety of threats at once, such 
as unauthorized access, network attacks, malicious code, blended threats, content-based 
attacks, spyware, and phishing. Proventia Network MFS integrates these best-of-breed 
security modules in a single high performance and easy-to-use UTM appliance: 
firewall/VPN, intrusion prevention, anti-virus, antispam, Web/URL filter, and application 
protection.

For more information about Proventia Network Multi-Function Security, see the following 
Web address:

http://www.ibm.com/services/us/index.wss/offering/iss/a1027111

� IBM Tivoli Security Compliance Manager identifies security vulnerabilities and security 
policy violations. It protects your business against vulnerable software configurations by 
defining consistent security policies and monitoring compliance of these defined security 
policies. It automates scans of servers and desktop systems, which can help reduce the 
cost and time that are associated with manual security checks.

Tivoli Security Compliance Manager provides reports to security officers and compliance 
auditors with detailed information about the security health of the business so that they 
can take the appropriate steps to make individual systems and departments compliant. It 
identifies software security vulnerabilities prior to costly damage being inflicted by security 
incidents, improves business operations, and helps to increase efficiencies though 
automation and centralization. Tivoli Security Compliance Manager assists in addressing 
compliance issues in regulations and standards by automating compliance tasks, 
monitoring correspondence, reducing human error, and taming compliance costs.

For more information about Tivoli Security Compliance Manager, see the following Web 
address:

http://www.ibm.com/software/tivoli/products/security-compliance-mgr/
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Figure 8 shows an overview of how all of these technologies can be combined into one full 
secure development life cycle. By integrating security-related IBM products in each step of the 
development life cycle, the security of your final product can be significantly enhanced.

Figure 8   Combining IBM technologies to create a comprehensive, integrated secure platform

Business scenario: A step-by-step approach to Web application 
security

In this section, we look at a business scenario in which an organization that had no security 
testing becomes one that has state-of-the-art security testing fully integrated into its software 
development life cycle. In this scenario, after hearing about several security breaches at its 
bigger competitors, the fictitious company decided to look at IBM’s products to improve their 
security to avoid the same negative publicity their competitors suffered from and to 
differentiate themselves by offering high quality secure Web-based products.

After talking to IBM, the company decided to turn their, currently insecure, software 
development life cycle step-by-step into a security-aware life cycle that produces high quality 
secure Web-based products. Because this company wanted to have immediate results, that 
is, they wanted to immediately know their security posture now, they initially chose to work 
with outsourced audits through Rational AppScan OnDemand Production Site Monitoring. 
This service allowed them to get immediate feedback while preparing to deeply integrate 
security into their systems. By doing this, they got access to the right resources and the right 
experts to further develop their security own plans. Parallel with this effort they began to 
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educate everyone involved in the development life cycle about security. This education was 
facilitated by the embedded Web-based training modules that help explain the vulnerabilities 
and demonstrate the exploits that were discovered by Rational AppScan OnDemand.

After the company trained a few of their own people to become sufficiently independent from 
the on-demand offering and able to perform their own security testing, they acquired the 
necessary licenses of the Rational AppScan Standard Edition and built their own in-house 
security audit team. By using the automatic scanning functionality of Rational AppScan 
Standard Edition, the in-house auditors discovered vulnerabilities at the end of the 
development life cycle. They reported them back to the developers for them to fix before the 
products were released.

Because of the continuing security training throughout the company, and the feedback of the 
in-house security audit team toward the developers, this company soon reached the point for 
the developers to take on more of the security responsibilities. To introduce security testing 
early in the development life cycle, the developers were provided with Rational AppScan 
Developer Edition. This allowed them to automatically discover vulnerabilities during coding 
and made them aware of bad, security related development practices that needed to be 
avoided. By catching vulnerabilities earlier in the development life cycle, the resources of the 
security audit team were freed up, allowing them to focus on more complicated vulnerabilities, 
thus further strengthening the security posture of the company.

Next more security testing was automated, and integrated into the build and test processes. 
Rational AppScan Build Edition and AppScan Test Edition were used to serve this purpose. 
At this point, the company had distributed security testing throughout their entire software 
development life cycle. 

To give development and management a good view of how security was progressing as the 
development projects evolved, the company started using the Rational AppScan Reporting 
Console as a centralized point for security data collection. With Rational AppScan Reporting 
Console, they were able to have an overview of all the security reports that were created with 
the different software tools used in their software development life cycle to increase visibility 
and further strengthen their security.

Centralizing all the vulnerability scan reporting had prepared this company to grow while 
keeping their security under control. By marketing their security as a key differentiator to their 
competitors in the Web application space, they sparked the attention of the market and 
started to grow rapidly. This created the need to have a fully scalable solution for security 
testing throughout the company. 

To cope with the size of their rapidly growing Web environment, the company introduced 
Rational AppScan Enterprise Edition into their software development life cycle. This scalable, 
enterprise architecture enabled them to keep scanning their massive amount of Web 
applications by using distributed scanning agents that they were able to control from one 
centralized reporting point in the Rational AppScan Enterprise Edition. This way they were 
able to continue to grow rapidly without having to compromise their marketable security. 

 

 

 

Improving Your Web Application Software Development Life Cycle’s Security Posture 31



 

Figure 9 shows an overview of how the company gradually integrated security into their 
software development life cycle to turn it into a rapidly growing company with state-of-the-art 
security testing.

Figure 9   A step-by-step approach to Web application security

Summary

As we see an evolution on the Internet from hackers performing fame-hungry sabotage to 
fraud to profitable organized data and identity theft, business leaders must consider the 
security of their Web applications as a vital performance indicator of the success of their 
business.

In this IBM Redguide, looked at Web application security from an attackers perspective. By 
looking into the attackers’ motivations and ways of operating, we demonstrated how they 
make money by attacking organizations on the Internet. We explained how attacking Web 
applications is a profitable business to them and how they use automation to cut costs and 
make more profit.

Next we showed you how, in the same way as they use automation to attack you, you can use 
automation in your software development life cycle to protect your organization. We 
introduced the IBM Rational AppScan product line and showed how you can integrate it into 
your software development life cycle to improve the overall security posture of your Web 
applications with state-of-the-art security testing. 

Finally, we showed a scenario in which a company with no Web application security testing or 
knowledge, transformed into a security-aware company with state-of-the-art Web application 
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security testing fully integrated in their software development life cycle in a scalable and 
controllable manner. We showed how delivering high-quality secure Web applications allowed 
the company to differentiate itself from its competitors and strengthen its position in the market.

Other resources for more information

Consult the following sources, which have been referenced in this guide, for more information:

1. IBM Internet Security Systems X-Force 2008 Trend & Risk Report

http://www.ibm.com/services/us/iss/xforce/trendreports/xforce-2008-annual-repor
t.pdf

2. Sharon Gaudin, “Estimates Put T.J. Maxx Security Fiasco At $4.5 Billion,” 
InformationWeek, May 2, 2007

http://www.informationweek.com/news/security/showArticle.jhtml?articleID=199203277

3. Nate Mook, “Cross-Site Scripting Worm Hits MySpace,” Betanews, October 13, 2005

http://www.betanews.com/article/CrossSite-Scripting-Worm-Hits-MySpace/1129232391

4. Gary Warner, “Radical Muslim Hackers Declare CyberWar on Israel,” CyberCrime & Doing 
Time blog, December 30, 2008

http://garwarner.blogspot.com/2008/12/muslim-hackers-declare-cyberwar-on.html

5. The MITRE Corporation, “Common Vulnerabilities and Exposures” 

http://cve.mitre.org/

6. Dan Verton, “Airline Web sites seen as riddled with security holes,” ComputerWorld, 
February 4, 2002

http://www.computerworld.com/action/article.do?command=viewArticleBasic&article
Id=67973

7. Web Application Security Consortium, “Web Application Security Statistics”

http://www.webappsec.org/projects/statistics/

8. Roi Saltzman and Adi Sharabani, Active Man in the Middle Attacks: A Security Advisory, 
IBM Rational Application Security Group, February 27, 2009

http://blog.watchfire.com/AMitM.pdf

9. Open Web Application Security Project (OWASP), “SQL Injection”

http://www.owasp.org/index.php/SQL_injection

10.Cisco Systems, “Understanding SQL Injection”

http://www.cisco.com/web/about/security/intelligence/sql_injection.html

11.Microsoft® SQL Server® 2008 Books Online, “SQL Injection”

http://msdn.microsoft.com/en-us/library/ms161953.aspx

12.RSnake, “XSS (Cross-Site Scripting) Cheat Sheet”

http://ha.ckers.org/xss.html

13.Cgisecurity.com, “The Cross-Site Scripting (XSS) FAQ”

http://www.cgisecurity.com/xss-faq.html

14.OWASP

http://www.owasp.org
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15.Web Application Security Consortium (home page)

http://www.webappsec.org/

16.Joris Evers, “Macworld crack offers VIP passes, hacker says,” CNET News, January 12, 
2007

http://news.cnet.com/2100-1002_3-6149994.html?part=rss&tag=2547-1_3-0-5&subj=news

17.Federal Information Processing Standards Publications (FIPS home page), Information 
Technology Laboratory

http://www.itl.nist.gov/fipspubs/
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Notices

This information was developed for products and services offered in the U.S.A. 

IBM may not offer the products, services, or features discussed in this document in other countries. Consult 
your local IBM representative for information on the products and services currently available in your area. Any 
reference to an IBM product, program, or service is not intended to state or imply that only that IBM product, 
program, or service may be used. Any functionally equivalent product, program, or service that does not 
infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to 
evaluate and verify the operation of any non-IBM product, program, or service. 

IBM may have patents or pending patent applications covering subject matter described in this document. The 
furnishing of this document does not give you any license to these patents. You can send license inquiries, in 
writing, to: 
IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such 
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION 
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR 
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, 
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of 
express or implied warranties in certain transactions, therefore, this statement may not apply to you. 
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